Space-based Architectures as Abstraction Layer for Distributed Business
Applications

Richard Mordinyi, eva Kiihn
Space-based Computing Group
Vienna University of Technology

1040 Vienna, Austria
{rm,ek} @complang.tuwien.ac.at

Abstract—For constantly changing businesses, it is essential
that the underlying software architecture is capable of manag-
ing agile business processes and meeting future business needs.
Decoupling between applications and services in distributed
systems is addressed by e.g., service-oriented architectures. On
the other hand, applications and its underlying middleware
are still tightly coupled with respect to the middleware’s
architectural style. As a result of the tight coupling middleware
adaptations introduced due to e.g., new business requirements
can affect the application as well. In this paper we propose
the concept of space-based architecture (SBA), that allows
decoupling distributed applications with respect to the under-
lying middleware architecture by combining the characteristics
and properties of state-of-the-art middleware architectural
styles captured in a simple API. The benefit of our approach
is minimal application adaptations in case of changing the
underlying middleware architectural style, which allows for
more efficient realization of new business requirements.

Keywords-Architectural Styles, Agile Business Requirements,
Abstraction, Space-based Computing

I. INTRODUCTION

Business constantly changes. Therefore, software archi-
tectures should be able to manage agile business processes
and need to have the ability to meet future changes and
business needs. It is essential for distributed systems to make
use of a flexible and adaptable platform that can respond
to new requirements in an efficient way. Consequently, the
usage of appropriate architectural styles for the design of
software systems is a challenge.

A common approach towards creating flexible, dynamic
business processes and agile applications is the service-
oriented computing paradigm (SOA) [1], [2]. In [3] this kind
of paradigm is also referred to as the pipes-and-filters archi-
tectural style belonging to the category of dataflow architec-
tures. For instance, the Enterprise Service Bus (ESB) [4]
promises to interconnect and route services in a loosely
coupled manner for a clear separation of business logic and
integration logic. However, an ESB routes service data from
one application to another and usually does not keep the
history of messages and service interaction, i.e. does not
maintain a global state.

Alexander Schatten

Complex Systems Desing & Engineering Lab

Vienna University of Technology
1040 Vienna, Austria
{alexander.schatten} @ tuwien.ac.at

Although, software systems are usually not built based on
a single architectural style [3], there is a tight coupling [5],
[6], [7] between the application and the used style. Thus,
middleware adaptations introduced due to e.g., new business
requirements (section II) can affect the application as well.
However, concerns not related to the application’s business
logic should be entirely encapsulated in the middleware,
which is not possible in case of rearranging its architectural
paradigm. This implies that changes to the architecture
can result in significant adaptations of applications, thus
those concerns have to be considered and implemented in
the application as well. Hence, in case e.g., new business
requirements cannot be met by the underlying infrastruc-
ture, a so called architecture breaker has been introduced
demanding for costly and time-consuming re-evaluation and
changes of the entire architecture. In the same way an
architecture limiter restricts a simple and efficient solution
for new requirements.

In this paper we propose the so called space-based ar-
chitectural (SBA) style for agile business processes that
allows decoupling distributed applications with respect to
middleware architectural styles. Our approach combines and
includes the characteristics and properties of the major
architectural styles found in distributed middleware (sec-
tion IV) captured in a simple API. SBA can be seen as
an abstraction layer between applications and architectural
styles, and as such it provides loosely coupling between
the applications and the styles, and therefore hides the
complexities of distributed systems from the application.
Consequently, changes to the architecture can be solved
within the architecture and do not affect application im-
plementation. SBA describes an active, coordination model
based architectural style. It allows the registration of sub-
scribers like in event-based systems [8] and the concurrent
deployment of various coordination models to describe the
ways of interaction of the distributed applications. This
way SBA is capable of supporting data-driven coordination
among clients, while preserving state inside the middleware.
Additionally, SBA provides Aspect-oriented programming
(AOP) functionality with runtime weaving for deployment

of cross-cutting concerns.

The benefits of the proposed SBA approach allow a)
the efficient realization of changing business requirements
affecting the underlying architecture; and b) adaptations of
the architecture transparent to the application resulting in
less complex application logic since it can entirely focus on
its business process.

The remainder of this paper is structured as the following:
section II pictures the use case, section III defines research
questions, section IV summarizes related work, section V
describes the concept and the architecture, while section
VI discusses the proposed concept. Finally section VII
concludes the paper and proposes further work.

II. SCENARIO

This scenario is based on an insurance company and its
agents in field services and demonstrates the terms “archi-
tecture breakers” and “architecture limiters”. The scenario
refers to two examples requiring a change in the architec-
ture due to new business requirements triggering additional
adaptations in the applications.

As a starting point let’s assume that agents visiting
potential customers fill in insurance related forms at the cus-
tomer. Due to technical and economical reasons the mobile
agent needs a permanent connection to the main insurance
server of the company, both physically via e.g., UMTS and
logically to its services. However, the required permanent
connection between the agents and the main server hinders
the agents to work efficiently with their customers. The
agents cannot be sure whether the transmission capabilities
of the provider cover the area where the customer lives,
leading to an unreliable customer information management.
This brings in a new requirement demanding the agent capa-
bility of working offline as well, without being dependable
on a permanent connection. However, this leads to a break
in the architecture in the sense that data stored before on
the main server only, has to be partially replicated to the
agents’ mobile devices and persisted there. Therefore, both
the server and the application need to manage their own
data and need to have the capability of synchronizing data
changes.

Another requirement refers to the efficiency of how or-
ders are processed between the insurance company and the
agents, and thus introduces an architecture limiter. In order
to increase customer satisfaction orders are not propagated
to and handled by a single agent only, but by a group
of agents. The order refers to a group of agents with the
capabilities needed to process the order. The agent who
wants to process the order is granted a specific amount
of time to do so. In case that time expires the order is
automatically reassigned to the group again, giving other
agents the opportunity to work with the customer’s order.
However, this business requirement introduces coordination
issues between the agents the architecture has to be capable

of dealing with. Since e.g., an ESB implementation is not
capable of such time-triggered re-routing and coordination
issues, the applications have to be adapted accordingly.

III. RESEARCH QUESTIONS

In this paper, we propose the concept of space-based
architecture (SBA)!, which allows the combination of sev-
eral different architectural styles. Based on recent projects
with industry partners from telecommunications and on
the limitations of traditional middleware technologies with
respect to introduction of new business requirements and
their affects on client applications, we wanted to investigate
a) whether the SBA approach is capable of representing the
characteristics of different architectural styles at the same
time, b) the advantages and limitations of the proposed
approach with respect to changing business requirements, c)
how to realize changing business requirements transparent
to the participating clients, d) how much complexity can be
shifted to the abstraction framework, e¢) how much affects on
client applications still remain in case the underlying archi-
tectural style has to be changed, and f) whether the proposed
concepts allows decreasing development and migration time
by reducing the effort needed to adapt the current system to
new business requirements and therefore saving costs while
improving adaptability and re-usability.

IV. RELATED WORK

In distributed systems there are many architectural styles
to be chosen. Distributed middleware are mostly based
on either dataflow style, such as pipes-and-filters, on
data-centered style, i.e. a repository, or on implicit invoca-
tions, like publish-subscribe or event-based [3], [9].

A. Dataflow Architectural Style

Pipes-and-filters, representing the dataflow style, define
independent components (filters) that can be connected with
each other but which do not know about the existence of
other filters [10]. The connections between filters determine
the pipeline. Sharing data between filters is only possible
by passing it from one filter to the next, even if it is not
needed in an intermediary step. SOA [2] typically makes use
of the pipes-and-filters style. Services can be implemented
as filters and the way of routing messages determines the
pipeline that represents the business logic. The ESB [4]
is the major platform used in SOA offering the necessary
functionality in order to make use of SOA. The ESB discards
any service-relevant data after message delivery. Thus, it
cannot offer a shared repository that clients can use in order
to coordinate themselves.

an implementation demonstrating the concept of SBA can be down-

loaded at http://www.mozartspaces.org

B. Data-centered Architectural Style

The essence of data-centered styles is that multiple com-
ponents have access to the same data store, and communicate
through that data store. A shared repository does provide its
clients with access to shared data. Databases are the typical
representation of this data-centered architectural style. They
support data distribution and therefore allow their clients
to coordinate processing of distributed shared data. Active
repositories tie together the shared repository with another
architectural style, which are event-based systems [8]. An
active repository is able to notify registered clients about
changes [10]. A repository does not provide the means
for specifying in which order its shared data needs to be
processed by its clients. Thus, repositories cannot offer
routing capabilities in order to determine the processing
sequence among its clients. Thus, it is irrelevant for the
usage in pipes-and-filters.

Another data-centered architectural style is the blackboard
based one, in which the state of the information on the black-
board determines the order of execution. A representative of
the style is e.g., the Linda coordination model by David
Gelernter [11]. It describes the usage of a logically shared
memory, called tuple space, by means of simple operations
(out, in, rd, eval) as a communication mechanism for parallel
and distributed processes. In principle, the tuple space is a
bag containing tuples with read/write access. Unlike Linda,
SBA allows e.g., storing shared data in a customizable
structured way (section V). This facilitates the efficient
implementation of coordination concerns among middleware
clients. Compared with other Linda implementations, which
completely rely on tuple matching only, this concept allows
the efficient realization of more complex coordination pat-
terns [12]. Besides its inherent shared repository nature, SBA
also supports the pipes-and-filters style (section V-B) by
using the concept of containers. Containers would represent
the filter components that can be interconnected [13] in order
to define the pipeline.

In [14] an extension to the pipes-and-filters style was
proposed, where a shared repository is also supported. How-
ever, the hybrid framework does not offer the abstraction of
the pipes-and-filters style but rather adds shared data to the
pipeline.

C. Implicit Invocation Architectural Style

This style is characterized by calls that are invoked
indirectly and implicitly as a response to a notification or an
event. The group is represented by the publish/subscribe [15]
and event-based [16] architectural styles.

V. ARCHITECTURE

This section pictures the idea of space-based architecture
in detail. It describes the components, interfaces, supported
operations, the various ways of executing operations, and
how architectural styles are represented.

A. Space-based Architecture Framework

In contrast to the original Linda model, the SBA archi-
tecture consists of Internet addressable containers [12]. A
set of containers span the so called space. In the first place,
a container is a collection of entries accessible via a basic
simple API. The difference to Linda is that a container may
be bounded to a maximum number of entries, and allows the
usage of so called coordinators with each having its specific
and optimized view on the stored entries. Figure 1 shows
the basic components [12] of a container.

Random
E1
o » E2 g7 B° | (Entry E1
© E3 E4
o 0 ES (Eny €2)
ol -2 Entry E2
- o -
cl|l >|©
N Entry E
o
[Operatiof] = Nl I Entry E4
© c]Q
L — c
~ | =
g o | ® Entry E5
(3 I
m|o
° o PRIO Entry E6
© Prio | ObjRef
o Y 1 E2
o » 5 |e7 65 Entry E7
3 E3
Figure 1. The main components of a container.

The data items that are stored in a container are called
entries. An entry can be either of type Tuple or of type
AtomicEntry. A Tuple contains other Entries, which can be
either AtomicEntries or other Tuples. An AtomicEntry is a
Generic Java class, so when it is instantiated, the class that is
contained within the AtomicEntry can be defined. An Entry
may also be a reference to other containers.

Coordinators are the programmable parts of the container
and are responsible for managing their view on the entries
in the container. The aim of a coordinator is to represent a
coordination model and to structure and organize the entries
in the container for efficient access. Each coordinator has
its own internal data structures which help him to perform
its task. Since the coordination model to be realized is
known beforehand, the coordinator can be implemented in
an efficient way. Additionally, any number of coordinators
can be added to a container, but it has to have at least one.

The container’s interface provides a simple API for
reading, taking, and writing entries, but extends the orig-
inal Linda API with the methods destroy, shift and
notify. Destroy removes an entry from the container,
while shift writes an entry after it has removed one. Con-
tainers support bulk operations as well, so that it is possible

to insert multiple entries into a container resp. to read/take
multiple entries out of it within one operation. The number
of entries to be retrieved or to be written is specified in the
so called selector that is used for the operation.

For every available coordinator there is a certain selector
that represents the counterpart to this coordinator. Selectors
contain parameters (like a counter for the minimum number
of entries to be retrieved) for queries in case of a read, take,
destroy access. In case of writing entries they contain a)
the parameters specifying the appropriate coordinators and
influencing it with special values, and b) the entry to be
added to the container.

Comparing the concept of containers with databases, the
drawback of databases is that they need a static data model
of the entries they have to store, while containers allow the
usage of several different coordinators at the same time,
enabling dynamic data models, and thus being schema-free.
In case of db4o?, accessing an entry is performed via
query-by-example, like in Linda. However, in [12] it has
been shown that containers allow an optimized realization
of queries and coordination models.

AA

Container Engine

Space
Container
Interface

o
ES

o
R
Post-Aspect 2

Pre-Aspect 1
Pre-Aspect 2
Pre-Aspect 3
Post-Aspect 1
Post-Aspect 3

10jeUIPI00D
Ol¥d
10jeUIPI00D
[oF|E]
10jeUIPI00D
wopuey

Figure 2. Pre- and post-aspects of a container.

Another component of a container are aspects [17] (Figure
2), realizing some parts of Aspect-oriented Programming
(AOP) [18] by registering them at different points of a
container. Aspects represent additional computational logic
and are executed on the peer where the container is located.
Aspects are triggered by operations either on a specific
container or on operations related to the entire set of con-
tainers, the space, rather on the according impact. Aspects
can be located before or after the execution of an operation,
indicating two categories: pre and post. Aspects are executed
sequentially in the same order in which they where added.
Adding and removing aspects can be performed at any time
during runtime.

Figure 2 shows a container with three pre and three
post aspects installed. The accessing operation is passed
immediately to the first pre-Aspect, before it is executed
on the container. The operation contains the parameters of
the operation, like transactions, selectors and timeout. If all
aspects return OK, the container implementations interprets
the selectors of the operations and executes the operation
[12]. Afterwards, all post-Aspects are executed. Beside an

Zhttp://www.dbdo.com/

OK, an aspect may return different values changing the con-
tainer operation accordingly. In case of NotOK the execution
of the operation is stopped and the transaction is rolled
back. In case of SKIP the operation is neither performed on
the container, nor on any following pre-Aspects. The post-
Aspects are executed immediately afterwards. The return
value Reschedule indicates to stop the execution of the
operation and reschedule it for a later execution.
Containers are Internet addressable using an URI
of the form “xvsm://mycomputer.mydomain.com:1234/
ContainerName”. The protocol type “xvsm” makes the
possible communication protocols transparent to the appli-
cation [19]. Depending on the application domain, or the
underlying network infrastructure, “xvsm” may be translated
to e.g. tcp+java, specifying that communication takes place
via a tcp-connection using java objects. The default commu-
nication is based on an XML based protocol that defines all
operations in a platform neutral way. A lookup mechanism
(e.g., DHTs [13]) resolves published container names to its
URL. In [13] it has also been explained how to replicate
containers transparent to the application in order to achieve
load-balancing and increased fault-tolerance.

B. Architectural Styles realized with SBA

This section describes how SBA is capable of combining
several different architectural styles, such that the complexity
remains in the middleware rather than in the application.
Figure 3 shows the approach for decoupling application
from architecture style in distributed systems. It proposes
to separate the application itself into an application layer
and an architecture layer representing the architectural style.
Between these layers a new layer the space-based architec-
ture is introduced as an intermediate layer that is able to
combine and switch between different software architecture
styles transparent to the application layer.

Client Application

Space-based
Architecture

Pipes B Pipes
and Repository and Repository
Filters Filters

Figure 3. SBA as an abstraction framework for architectural styles for
reducing complexity in client applications.

Client Application

As shown in Figure 4 the SBA concept combines the
characteristics of different architectural styles on several
layers. Each layer is responsible for a specific task and as
such it is capable of representing a specific architectural style
on its own or in combination with another layer.

1) SBA resource representation: This layer (Layer 1) is
the one that can be used by the client applications. Here,
the concept of organizing data in containers by means
of coordinators and the various container access methods

Client Application

write’

Client Application

write
SBA resource

__ read
take”/’7'notify I _ :
\ \ —__ representation
—
Container / Container

\ c1 c2
;\\
T SBA resource
epllcallon Techniques [write \‘\;\ organisation
Contamer C1.1 [Aspects | Container C2.1
\ _ Container C1.2)
\ml—
7——\\\ SBA resource
—__ location
@ode 2
\ Node 1 (C1.1) g Node 5 (C2.1)
2° _

g
— Node3 Noded(C12)

Figure 4. Layering of SBA competence.

(especially blocking operations [11]) are the most important
ones. SBA allows customized coordination that determines
the access to the data. This kind of architectural style is
inherent, since the origins of SBA come from the Linda
model. However, by means of coordinators and selectors,
data stored in a container can be stored and queried for
in an efficient way taking into account domain specific
requirements. The main difference to other repository like
databases is that it can block operations allowing queries for
future data states.

For the application this layer looks like a virtual server
with a structured data store, already fulfilling the require-
ments for a data-centered architectural style. The application
itself needs to focus on its business aim only, i.e. needs
to specify the coordination models needed within the dis-
tributed applications derived from the business aim.

2) SBA resource organisation: This layer (Layer 2) intro-
duces aspect capabilities, which can be added and removed
transparent to client applications. In order to fulfill the
requirements of the pipes-and-filters architectural style, it is
not enough to deploy a container using a FIFO coordinator
at Layer 1. The containers in the chain have to be intercon-
nected, which can be done by aspects. The FIFO coordinator
makes sure that a container behaves like a queue. Thus,
the container is the abstraction for a filter manipulating a
message in a service pipeline. Pre- and post aspects on those
containers can be used to determine message routing.

As stated in [20] aspects can also be used to notify
applications. There, various ways of how applications can be
notified and how containers have to be interconnected is ex-
plained. This implies the representation of the blackboard ar-
chitectural style, but also allows to support publish/subscribe
and event-based architectural styles.

3) SBA resource location: Layer 1 hides the fact where
a container is physically stored in the network. From an
client application point of view it is not known whether the

container is stored on a single server or in a P2P network.
Therefore, similar to an ESB, SBA allows to migrate a single
container executed on a server to a replicated one deployed
in a P2P network transparent to the client application. In
such case, aspects in Layer 2 would define the replication
technique between the distributed containers. How replicated
containers in a P2P network are realized is explained in [13]
and [21].

VI. DISCUSSION

In this paper, we propose the concept of space-based
architecture (SBA) as an technology in order to combine
different architectural styles. The SBA approach is capable
of representing the characteristics of different architectural
styles at the same time because it offers a generic interface,
the concept of containers and aspects. Therefore, e.g. writing
data to a container allows the simultaneous use of data flow
styles as well as data-centered styles.

The advantages of the proposed approach with respect to
changing business requirements are that the applications do
not have to consider the underlying architectural style. How-
ever, an abstraction technology placed between middleware
and client application causes an additional overhead which
affects overall performance. Changing business requirements
as described in the scenario can be applied transparently
to participating clients because they communicate via the
same interface with the middleware. Thus, complexity can
be shifted to the abstraction framework by adding aspects
to the middleware that implement the requirement details.
However, client applications still might have to be adapted if
new requirements do not include distribution details only but
also business process changes. Nevertheless, the proposed
concept allows decreasing development and migration time
by reducing the effort needed to adapt the current system
to new business requirements and therefore it saves costs
while improving adaptability and re-usability. Summing up,
we take a look at the quality attributes defined in [22]:
Performance is decreased due to the additional layer. Se-
curity is supported transparently to client applications by
adding security-relevant aspects to the SBA middleware. A
space can be transparently replicated in order to improve
availability and fault tolerance. According usability, SBA
offers a generic interface. Components always act upon
the same interface, which improves modifiability, modu-
larization and encapsulation. By abstracting the underlying
architectural style the SBA can be ported to many different
middleware technologies, such as inter-process communi-
cation (e.g. RMI), SOA, etc. SBA supports loose coupling
facilitating re-usability. Since client applications do not need
to be adapted, they can be tested in the same manner which
improves testability. In [23] several properties have been
compared in the implementation of a use case that requires
an algorithm to perform circular word shifts of a given input.
This was implemented on one hand with a shared repository

and on the other hand with pipes and filters. The conclusion
was that changes of algorithm and functionality as well as
re-usability are better supported with the pipes-and-filters
style. Direct data access was better supported by the shared
repository. SBA as an abstraction framework is able to offer
all these advantages to its applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described the concept of Space-based
architecture as an abstraction framework for middleware
architectural styles in order to allow the realization of
new business requirements with minimal affect on client
applications. We derived research questions and answered
them based on a scenario from the insurance domain.

Based on the components SBA provides, it is capable of
simultaneously support and behave like any of the major
architectural styles of middleware, like pipes-and-filters (e.g.
as can be found in SOA) and shared repositories (e.g. a DB).

The benefits of the approach are a decoupling between
applications and architectural styles allowing changes in the
architecture with minimal effect on the client, resulting in
less testing of client implementations and therefore mini-
mized time-to-market.

This paper is meant to be an introduction into a series of
architectural changes of distributed systems. Further work
will include an investigation of independent component-
, virtual machine-, and call-and-return architectural styles
with respect to possible ways of representing their fea-
tures by means of SBA components. Another open issue
is benchmarking of the framework, i.e. to what extent
does the additional abstraction layer decrease computational
performance. A more comprehensive evaluation with respect
to testing and development time is intended. Finally, the
possibility of conflicting architectural styles and its effects
on complexity in client applications has to be evaluated.

VIII. ACKNOWLEDGEMENT

We would like to thank Thomas Friihbeck from Telekom
Austria and Stefan Biffl for the valuable discussions on this
topic. This work has been partially funded by the Complex
Systems Design & Engineering Lab, Vienna University of
Technology (http://www.informatik.tuwien.ac.at/csde).

REFERENCES

[1] T. Exl, Service-Oriented Architecture: Concepts, Technology,
and Design. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[2] M. P. Papazoglou and W.-J. Heuvel, “Service oriented archi-
tectures: approaches, technologies and research issues,” The
VLDB Journal, vol. 16, no. 3, pp. 389-415, 2007.

[3] S. Dustdar, H. Gall, and M. Hauswirth, Software Architekuren
fiir Verteilte Systeme. Springer-Verlag, 2003.

[4] D. Chappell, Enterprise Service Bus.
2004.

O’Reilly Media, Inc.,

[5] N. Medvidovic, “On the role of middleware in architecture-
based software development,” in SEKE ’02: Proceedings of
the 14th international conference on Software engineering
and knowledge engineering. New York, NY, USA: ACM,
2002, pp. 299-306.

[6] L. Aldred, W. M. van der Aalst, M. Dumas, and A. H.
ter Hofstede, “On the notion of coupling in communication
middleware,” pp. 1015-1033, 2005. [Online]. Available:
http://dx.doi.org/10.1007/11575801_6

[7] H. Xiao, J. Guo, and Y. Zou, “Supporting change impact
analysis for service oriented business applications,” in SDSOA
'07: Proceedings of the International Workshop on Systems
Development in SOA Environments. Washington, DC, USA:
IEEE Computer Society, 2007, p. 6.

[8] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L.
Wolf, “Issues in supporting event-based architectural styles,”
in ISAW ’98: Proceedings of the third international workshop
on Software architecture. New York, NY, USA: ACM, 1998,
pp. 17-20.

[9] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. Wiley
Publishing, 2009.

[10] P. Avgeriou and U. Zdun, “Architectural patterns revisited -
a pattern language,” in Proc. Of 10th European Conference
on Pattern Languages of Programs (EuroPLoP 2005), 2005.

[11] D. Gelernter, “Generative communication in linda,” ACM
Trans. Program. Lang. Syst., vol. 7, no. 1, pp. 80-112, 1985.

[12] E. Kiihn, R. Mordinyi, L. Keszthelyi, and C. Schreiber, “In-
troducing the concept of customizable structured spaces for
agent coordination in the production automation domain,” in
AAMAS ’09: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2009, pp. 625-632.

[13] E. Kiihn, R. Mordinyi, H.-D. Goiss, S. Bessler, and S. Tomic,
“A p2p network of space containers for efficient manage-
ment of spatial-temporal data in intelligent transportation
scenarios,” Parallel and Distributed Computing, International
Symposium on, vol. 0, pp. 218-225, 20009.

[14] A. R. Franois, “Software architecture for computer vision:
Beyond pipes and filters,” Technical Report IRIS-03-240,
Institute for Robotics and Intelligent Systems, USC, Tech.
Rep., 2003.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Comput.
Surv., vol. 35, no. 2, pp. 114-131, 2003.

[16] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[17] E. Kiihn, R. Mordinyi, L. Keszthelyi, C. Schreiber, S. Bessler,
and S. Tomic, “Aspect-oriented space containers for effi-
cient publish/subscribe scenarios in intelligent transportation
systems,” The 11th International Symposium on Distributed
Objects, Middleware, and Applications (DOA’09), 2009.

(18]

(19]

(20]

[21]

[22]

(23]

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” pp. 220-242, 1997. [Online]. Available:
http://dx.doi.org/10.1007/BFb0053381

R. Mordinyi, T. Moser, E. Khn, S. Biffl, and A. Mikula,
“Foundations for a model-driven integration of business ser-
vices in a safety-critical application domain,” Accepted for
the Track on SoftwareProcess and Product Improvements
(SPPI) at 35th Euromicro Conference Software Engineering
and Advanced Applications (SEAA’09), 2009.

E. Kiihn, R. Mordinyi, and C. Schreiber, “Configurable notifi-
cations for event-based systems,” Vienna University of Tech-
nology, (TechRep at http://tinyurl.com/oht888), Tech. Rep.,
2008.

E. Kiihn, R. Mordinyi, M. Lang, and A. Selimovic, “To-
wards zero-delay recovery of agents in production automation
systems,” Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, vol. 2, pp. 307—
310, 2009.

L. Bass, P. Clements, and R. Kazman, Software architecture
in practice. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1998.

M. Shaw and D. Garlan, Software architecture: perspectives
on an emerging discipline. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1996.

