
A Near-Real-Time Behaviour Control Framework

Bastian Preindl
Institute of Software Technology

and Interactive Systems
Vienna University of Technology

Austria
preindl@ifs.tuwien.ac.at

Alexander Schatten
Institute of Software Technology

and Interactive Systems
Vienna University of Technology

Austria
schatten@ifs.tuwien.ac.at

Abstract

The NuBric behaviour control framework (BCF) is a
near-real-time framework written entirely in Java based on
the paradigms of both role based access control (RBAC)
and policy based access control (PBAC) which has been
designed to be open and extensible by third-party-modules.
Its purpose is to protect resources of any kind by session-
specific access restriction and behaviour control.

In short a user or process has to preliminarily connect to
the framework and the framework decides whether the user
or process is permitted to access the protected resource or
not. If the permission is granted the user or process is able
to directly access the resource but will be controlled and
regulated during the access, so NuBric acts as behaviour
control between user or process (session) and resource.

NuBric by design does not protect access to objects
in memory nor is it deployable within another applica-
tion framework. It constitutes a standalone near-real-
time framework to restrict access to external, framework-
independent resources by controlling and triggering exter-
nal, framework-independent facilities.

1 Introduction

The purpose of the NuBric framework is to provide fine-
grained access control to resources based on users’ or pro-
cesses’ roles and their behaviour in the system. These re-
sources may be hardware (computers, devices, communica-
tion facilities) or software (files, processes, threads).

Nearly every resource shipping today is equipped with
its own access control or security features. The purpose of
NuBric is not to substitute them, it moreover needs these
features for its control ability. The NuBric framework mod-
els an internal object representing the accessing client based
on properties like a UID, an IP-address, even a username.

When gaining access to a NuBric-controlled resource the
approaching user (or any other object like a process) is go-
ing to be examined and classified. Relying on the informa-
tion which is fetchable about a user and how this informa-
tion is constituted, the resource access abilities are set.

The NuBric framework has been designed and imple-
mented to be flexible, versatile, scalable, portable, platform
independent, easy to configure, setup and bring into opera-
tion and—as most important aspect—easy to extend.

To achieve these objectives the framework has been de-
signed in an object-oriented way and implemented using
Java. Java offers easy to handle ways like dynamic class
loading and reflection to dynamically extend the framework
even during runtime.

NuBric’s philosophy is to act as delegating and control-
ling instance (access decision facility—ADF) for and be-
tween access requests (modelled as session object), pro-
tected resources and policy enforcing facilities. The frame-
work and the framework’s modules do not enforce policies
theirselves like access enforcement facilities (AEF) do—
they rather trigger external devices and facilities to enforce
policies (see figure 1). ”Outsourcing” the policy enforce-
ment by near-real-time reconfiguration of external devices
and facilities is leading to maximum transparency, perfor-
mance and stability [10].

The NuBric resource access framework (RAF) is the
completely re-engineered successor of the Irongate AAA
Architecture published first time in 2004 [4]. Whereas the
architecture described in [16] was mainly focused on net-
work access control, the NuBric framework underlies no
boundaries concerning it’s field of application. The basic
idea of NuBric has been enhanced since 2001 and imple-
mented and tested within academic environments and from
a scientific point of view since 2002.

NuBric’s development state is alpha by November 2006.
By now most parts of the framework architecture are im-
plemented and the framework is runnable in stable way.
Some parts are still open to changes for the next few months



Figure 1. NuBric’s role within a secured environment: Before gaining direct access to a resource the access requester
has to authenticate itself within the framework (1). After successful authentication the framework enables the requester
to directly access the resource (3) by enforcing access policies (2)

(method invocation sequence, module loading, configura-
tion) or not implemented yet (clustering).

2 Behaviour Control Scenarios

In principle NuBric has been designed to be a frame-
work working in near-real-time, controlled by it’s watch-
dog, but is also able to be reduced to e.g. an authentication
tool not supervising access to resources after giving permis-
sion. Hence, the framework is capable to handle every kind
of access and behaviour control, whether it has to be done
in near-real-time or not.

The reason why the framework is able to work and react
in ’near-real-time’ but not ’real-time’ is the absence of guar-
anteed resources and reaction times which would be needed
to satisfy the requirements of a real-time system. The
framework’s watchdog is querying the system’s hardware-
clock to schedule the method invocations which on their
part act as soon as the required resources are present.

The framework’s API is optimized to enforce the design
of highly reusable modules. So modules written for one
scenario may be reused in another, completely different,
scenario. Also the delivery of module packages covering
a whole topic is supported and internal code reuse is eas-
ily possible. E.g., when a module is developed to access a
specific database to retrieve session specific data it can be
reused in various access control scenarios like ssh login or
web-login.

The following use cases are short, very different exam-
ples what NuBric is capable of if the right modules are im-
plemented.

2.1 Detection of application-policy abuse

Service providers define policies for usage of their ser-
vices (e.g, in web-mail services like Yahoo mail, users for-
bid the usage of robots to automatically create email ac-
counts in their Anti-SPAM policy [19]). However efficient

policy execution is a challenging task. The somewhat tricky
thing about automated abuse is that the actions of one agent
are not harmful and probably even within service policy
boundaries. The same actions taken by an endless count
of agents are indeed harmful and dangerous.

A typical kind of abuse of web-applications is the in-
stallation of intelligent software agents to multiply abuse
activities which not seldom cause respectable harm to in-
frastructures and businesses. NuBric may provide counter-
measures on two levels: First, access control is not only
provided at login-time, but running sessions can be ob-
served and interrupted by the framework. Secondly, com-
plex behaviour-evaluation can be implemented, which is not
restricted to observation of a singe user account.

Following the example above a module could be imple-
mented that analyses the behaviour of multiple sessions: If
abuse patterns are detected, the access control module could
eventually terminate running sessions of clients involved
and lock them out of their accounts plus inform adminis-
trators about the incriminating activities.

2.2 Network interconnection control

As NuBric’s origin lies in network access control (NAC)
and network access protection (NAP), the scenario of con-
trolling the access to the Internet by focusing on the local
gateway as main policy enforcement point (PEP) to control
a network user’s behaviour is standing to reason.

In this use case the framework’s policy enforcement
point(s) are the local Internet gateway, its packetfilter, traf-
fic shaper, DNS-service and routing control in detail. The
user authentication at the framework may be handled in sev-
eral ways, e.g. by providing a module handling incoming
connections initiated by a proprietary client software which
passes username and password or by interacting with other
applications like mail server and web-services (refer to the
scenario ”single-sign-on”).

When an authentication-procedure is instantiated by the



user to gain access to a NuBric-managed Internet connec-
tion, a new user object is instantiated within the framework
and fed with every information the client-interfacing mod-
ule is able to collect from the client (user). Important val-
ues are IP-address, MAC-address, username and password
for sure. The IP- and MAC-addresses are later used to set
the access rules by dynamically reconfiguring the system’s
packetfilter (a similar approach is described in [11]).

After graceful authentication the policy rules are dynam-
ically calculated depending on accounting information col-
lected about the user and applied by several policy enforce-
ment points (or policy enforcement tools) what enables the
user to (probably restrictedly) access the Internet. During
the user’s authenticated session its (traffic) behaviour is con-
tinuously monitored and evaluated by polling values like
packet and byte counters, firewall log facilities and connec-
tion lists. As long as the user’s behaviour is within both dy-
namically calculated and preset policies (where these poli-
cies are being continuously refreshed) and the user remains
online (doesn’t autonomously quit the session) his ability to
natively access the Internet is uninterrupted. If its behaviour
(even slightly) exceeds the boundaries set, the session is
interrupted by the framework and the policy enforcement
points disable the user to continue its Internet access.

A precondition is for sure, that modules for all func-
tions needed are already loaded by the framework. Mod-
ules we could need are backend-connectors for e.g. LDAP
and mySQL, time and volume calculators, packetfilter
and shaper controllers, byte counter evaluators, accounting
modules a.s.o.

2.3 Enterprise framework integration

This scenario is at the moment some kind of experimen-
tal. The idea is that the NuBric framework is integrated
in an enterprise application framework by communication
using a standard protocol like JMS. A connector is de-
ployed as Servlet which interacts with the NuBric frame-
work (as communication protocol the SOAP-based secu-
rity exchange protocol suggested by Suzuki et al. is in-
tended [18]). Other servlets or beans authenticate whatever
they want (or trigger whatever they want) by logging into
the framework or registering in the NuBric framework us-
ing JMS.

One sophisticated way of enterprise framework integra-
tion would be the configuration of a web-application request
interceptor like valves (Tomcat) or filters (Servlet 2.3 spec-
ification [2]) which enables a completely transparent access
and control for every service-request. The idea is to inter-
cept the invocation of the servlet before the servlet is called
and evaluate the request in NuBric at that place. NuBric can
now perform arbitrary analysis to decide whether the user is
allowed to access this resource or not.

The interesting aspect of this approach is that the con-
cerns are clearly separated, as the web-application is not
aware of this access control mechanism. Additionally, if
Tomcat valves are used (not filters), the configuration of this
access control mechanism takes place in the server and not
in the servlet configuration

2.4 Single-sign-on/off

Providing reusable modules for web services and appli-
cation servers and e.g. a module which acts as or interacts
with a daily secure authenticating procedure of the user like
checking for new emails when arriving in the office or using
a smartcard for entering the office could substitute all other
authentication procedures usually needed to gain access to
the needed resources for work.

When IMAP(S)-authentication is executed successfully
the framework enforces all controlled resources like the
company’s web service, the local file server, the Internet ac-
cess control to accept connections established by the user’s
machine which has been authenticated via IMAP. Also in
this case modules which are already implemented to satisfy
other use cases can easily be reused.

Regarding security requirements which have to be sat-
isfied in the context of e.g. online banking the perspec-
tive of providing a low-level single-sign-off facility driven
by NuBric and once more use-case-unspecific modules is
standing to reason. If an online banking user’s misde-
meanour is not possible to be cut off by the web-application
serving the user’s requests caused by design flaws or un-
expected software behaviours an emergency routine could
be initialized by e.g. the web-application’s control facility.
This emergency routine interfaces with our framework and
the framework on its part sets packet filters to cut off the
misconducting user’s session beneath the application layer.

3 Related work

NuBric integrates paradigms and principles which are
well-defined in the past to define the term (user/session) be-
haviour control, which is novel in the field of security and
access control.

By abstracting every access attempt or controlled session
to a session object NuBric acts like a role-based access con-
trol (RBAC), as described in [3]. Nabhen and Jamhour fur-
thermore combine RBACs with policy-based access control
(PBAC) in [14] (calling this RBPIM: The role based policy
information model) and therefor get closer to our frame-
work’s approach, but without mentioning the near-real-time
component and behaviour control. By considering rules de-
fined in connected data-sources in relation to identified ses-
sion objects NuBric has some influences of rule-set based
access control (RSBAC) like mentioned in [15] and [12].



Unlike [1] NuBric is not only based on events but moreover
controlled by an autonomous management instance provid-
ing abilities to act in near-real-time.

The Securent Entitlement Manager [17] which has been
developed by Securent in 2006 provides a quite similar ap-
proach focused on application access control based on the
eXtensible Access Control Markup Language (XACML)
[13], SOAP and the Security Assertion Markup Language
(SAML) [8].

4 Architecture

The NuBric framework is implemented as multi-
threaded native Java-application providing a container to
deploy modules. The kind of the deployed modules de-
fine the frameworks application domain. Without modules
the framework is able to run, but unable to act in any way,
so normally at least a module to hot-plug new modules is
loaded at the framework’s startup.

Hot-pluggable modules provide the functions needed for
the different states an access gaining user or session (object)
can obtain. At the moment these states are yet hardcoded
and are namely (in execution order) undefined, logging in,
authenticating, accounting, activating, being online and log-
ging out.

The framework implements a controlling instance
(called the ”watchdog”) which acts as action trigger for the
plugged in modules. It decides which action of which mod-
ule is initiated at which time.

The framework’s Core handles framework’s startup
and shutdown and the intercommunication with other
NuBric instances (clustering) and with the host system. It
controls the Watchdog-thread and provides methods for a
communication between modules and session objects.

The Watchdog-thread is the ”near-real-time”-
component of the framework. The watchdog is instantiated
at startup and continuously cycles through all current
connections and connection attempts (represented and
referred to as ”session objects”). It inspects every session
object concerning it’s current state and decides if the state is
going to be changed. At state-change the relevant external
module’s methods are invoked.

External modules are needed to interface and com-
municate with facilities outside the framework (e.g. pol-
icy enforcing agents/points, authentication backends, ses-
sions or requests). When starting the framework without
modules loaded during startup the framework can be con-
sidered ”empty” and without practical functionality. An
API is provided with the framework to implement third-
party-modules which are deployable in the framework’s
module-container whether at startup or by hotplug dur-
ing runtime. The purpose of loading modules is to define
the application area and to add any functionality. Every

module implements one or more of the following meth-
ods: (Session)Authentication, (Session)Accouting, (Ses-
sion)Activation, (Session)Update, (Session)Deactivation.
At least one module is implicitly needed to interact with
the environment in any way.

The users or processes and their access attempts are
abstracted as session objects within the framework and sub-
ject of all watchdog operations. Whenever a subject (ses-
sion, process) wants to access the protected object (con-
trolled resource) it has to preliminarily establish a connec-
tion to the framework instance protecting the object. This
connection is mentioned as connection attempt and mod-
elled as ”session object” within the framework. When ac-
cess permission is granted the subject usually establishes a
direct connection to the protected object while passively or
actively still staying in connection with the framework.

4.1 Module purposes

A module developed for the framework by using the pro-
vided API satisfies one or more of the following purposes
as visualized in figure 4:

• Authentication—defined as authenticate(session)

• Additional data retrieval—defined as fetch(session)

• Policy rule decision—defined as account(session)

• Policy enforcement—defined as activate(session)

• Near-real-time Behaviour control— defined as up-
date(session)

• Logging—defined as log(message)

• Session connector or session interceptor—by provid-
ing interfaces to initialize and keep alive controlled
sessions

• Framework management—by providing external inter-
faces to interact with the framework’s core.

An in some cases similar approach is proposed in [7].
Figure 3 illustrates the (time) correlation between the in-

ternal state of a session (object), the state-dependent method
invocations and the abstract process flow of a session.

When a new session is instantiated whether actively or
passively (also refer to figure 4 further on) a new ses-
sion object is created, set to state blank (returned by
Core.newSession()) and initial data is fetched by the mod-
ule handling the session on client-side (session connector
or session interceptor).

If all required parameters are present after a given time
(signaled by the invocation of Core.login()) the state is
changed to loggingon and Modules.authenticate(Session) is



Figure 2. NuBric’s framework architecture: The WatchDog-thread (1) continuously cycles (2) through all currently
active sessions (3) stored in the SessionContainer(4). If the current state of a session requires an action the WatchDog
triggers (5) the ModuleContainer (7) to invoke the proper method (6) of every deployed module (8). If a module
needs more information about a session or wants to perform framework management operations it communicates with
the framework’s core (10) via a specified interface (9). To deploy framework modules at startup the configuration
file loader (11) is instantiated. To control the framework directly without using a framework management module a
common POSIX signal handler is established (12) while framework interconnector (13) will facilitate clustering of
multiple framework instances locally or remotely.

invocated (authentication). Otherwise the session is go-
ing to be deactivated by invocating Modules.logout(Session)
and the state is set to offline.

If the authentication was successful (signaled by a
module’s method calling Core.authenticated(Session)) af-
ter a given time (except for state active every state
provides a preset timeout not mentioned further) Mod-
ules.account(Session) (additional data retrieval and pol-
icy rule decision) is invocated and the state is set to ac-
counting.

This procedure is repeated for activating (policy en-
forcement). After shifting the session state to active, Mod-
ules.update(Session) (behaviour control) is invoked con-
tinuously while the session is active.

After session termination whether by a module (e.g.
framework management, policy rule decision, be-
haviour control) or by the session itself (e.g. volitional
logout, connection interruption) Core.logout(Session) is in-
voked (policy enforcement, additional data retrieval).
The session state is changed to deactivating and after lo-
gout method invocation to offline.



Figure 4. NuBric’s framework modules and their purposes: A new session is established whether actively by authen-
ticating at the framework via a direct connection or passively by being tracked by a an access interceptor (1). In both
cases a session connector or interceptor module is needed. Authentication modules authenticate (2) a session by query-
ing external data sources (e.g. an LDAP backend) based on information collected and additional data is retrieved (3)
by modules also accessing external sources. After successful authentication the policy rule decision takes place (4) in
specific modules what is a precondition for triggering the policy enforcement points (5) in the next step. From now on
a session is deemed to be established. During an established session behaviour control modules collect and evaluate
information by querying session inspection facilities or the controlled resource itself (6). When a session is going to be
terminated whether by framework’s or session’s decision the policy enforcement points are triggered to remove special
session-specific rules (what immediately disables a direct connection between requester and resource) and a session
summary is passed to external data sources (also known as accounting). During all framework, module and session
operations logging may take place which uses external log facilities to distribute and communicate log messages (7).
Framework management sessions (8) are established concurrently via special modules.

After a predefined time the session object is removed and
the session is finished.

4.2 The watchdog thread

WatchDog is started concurrently at the framework’s ini-
tialization sequence and is established to control the state
of every session object. In dependency on it’s configu-
ration and the session object’s states it leaves an object
untouched or changes it’s state and invokes the properly
method of all modules in relation to the session by call-
ing ModuleTable.methodName(session). WatchDog cycles
through all sessions and checks their states and the time they
already remain in their current state periodically.

The origin of the NuBric framework is network access
and near-real-time traffic control, so the currently hard-

coded method-invocation-sequence (authenticate, fetch, ac-
count, activate, online, deactivate) is optimized for this kind
of tasks.

WatchDog is also started and running even if no mod-
ules are loaded, but a running WatchDog without having
any modules loaded is practically idle because there are no
possibilities given to hotplug any modules during runtime
without a loaded module supporting a module hotplug. So
at least one module has to be loaded at startup to give any
functionality to the framework.

4.3 Configuration

The configuration of the framework can be divided into
Core and Module configuration.

The Core configuration is loaded and passed to the



Figure 3. NuBric’s session handling sequence

framework’s core at startup and cannot be changed during
runtime. It defines the behaviour of the framework concern-
ing timings, states (at the moment only state timings) and
other basic properties like the node’s name. When load-
ing a module the Core configuration (Properties) is merged
with the module’s specific configuration and passed to the
module at initialisation.

The Module configuration is established by passing
a module’s configuration held in a Properties-container to
the module at initialisation (by calling AModule.perpare()
enforced by the Core). The configuration is whether set
in the configuration file loaded at startup (if the module
is loaded at the framework’s initialisation) or via an ex-
tra module which is able to hot plug new module’s. This

module must pass a Properties-object when delivering the
raw Class-object. This way of loading new module’s during
runtime is a base for configuration file independence. If e.g.
the configuration file format is changed in future a proxy-
module-loader simply has to be loaded to mix up different
configuration formats.

4.4 Container classes

To manage the values coming across during the frame-
work’s runtime some individual container classes have been
implemented. Values which have to be managed and con-
trolled are modules, sessions, session’s parameters and
timestamps. So the following container classes are avail-
able:

• ModuleContainer—Every module loaded properly is
referred to in the ModuleContainer. The ModuleCon-
tainer is needed by the WatchDog to call the proper
methods of every module. Whenever a module is shut
down it’s going to be removed from the ModuleTable.

• SessionContainer—Every session managed by the
framework is referred to in the SessionContainer. It’s
needed by the WatchDog to handle and manage all ses-
sions on the one hand and by modules to directly ac-
cess sessions by their session-ID on the other hand.

• Session—Every user connecting to the framework is
represented by its own session object. This object con-
tains every value concerning the session starting with
its id and ending with every imaginable value of any
possible datatype. Also a TimeStamp object is referred
by the session object to tell the WatchDog when to
change the object’s states.

• TimeStamp—Acting as a kind of ”marker” the TimeS-
tamp tells the WatchDog when the last state-change
has occurred for every session. So for every session
exactly one TimeStamp is instantiated. The stamp may
be read out and set.

4.5 Log facility

To avoid unwanted dependencies and interruptions
caused by exceptions (errors, warnings ...) a log facility
similar to log4j [5] has been designed. Every module may
be part of the log facility as creating log messages on the
one hand and processing log messages on the other hand.

Whenever anything happens a log message is created by
calling Core.log(). Core.log instances a new LogMessage
object and calls ModuleContainer.log(). The ModuleCon-
tainer then instances a new ThreadHandler for every mod-
ule held in the container and the ThreadHandler calls the
log() method of every module.



There is no exception thrown back to the calling
method—every exception is caught and wrapped into a
LogMessage-object. This is one of the framework’s con-
clusions: It is more important that there is no framework
operation interruption than having every error caught oc-
curring in one of the modules. But the LogMessage doesn’t
only contain an exception occurred, it moreover holds sev-
eral additional information about every message instanced.

By outsourcing the task of persistent logging to the re-
sponse of third-party modules NuBric underlies practically
no boundaries concerning the procession of log messages.
This easily enables the integration of standards like log4j,
syslog or any other established log facility.

The reason why not directly connecting to log4j but pro-
viding a proprietary log facility is the attempt of designing a
slim and very independent framework with no requirement
of external configuration files.

4.6 Multi-Threading model

NuBric has been implemented considering the need of
high performance and stability. To comply with these re-
quirements the framework heavily relies on threads. When-
ever a method is invoked, a new Thread object is instanced
only for processing this method. This design decision cov-
ers two important advantages:

1. The use of multiple threads enhances performance and
makes the use of multi-core-processors possible

2. The whole framework doesn’t depend on the perfor-
mance and correctness of one single module. If one
method-invocation crashes, whether the module nor
the whole framework are affected in any way (surely
when using synchronized blocks there has to be a
mechanism to avoid dependencies).

To emphasise the advantages of thread-decoupling the
following example is considered (refer to the sequence dia-
gram displayed in figure 5):

Two different modules for authentication are deployed
within the framework (e.g. one LDAP-connector, one
RADIUS-connector). A newly established session is go-
ing to be authenticated and therefor the two modules’ au-
thentication methods are concurrently invocated. The first
module confirms a successful authentication before exceed-
ing the predefined maximum time but the second module’s
confirmation is delayed due to backend connection troubles.
In a scenario where both thread executions are not decou-
pled nor running independently the session would whether
be rejected due to a timeout or would have to wait until the
second module has finished authentication even if the first
module’s authentication result was already satisfying. But

in case of thread-decoupling the logon-sequence is imme-
diately continued after successful authentication by the first
module even if the second module hasn’t finished authenti-
cation yet.

In figure 5 the procedures of method invocation and
thread decoupling initiated by the watchdog-thread are il-
lustrated in detail: Firstly the watchdog fetches the actual
session list from the session container (whereas all session-
concerned information is modelled internally as ”user”), re-
trieves the first user object in the list and queries its current
timestamp from the object itself. Whenever a timestamp
has exceeded a preset limit its refreshed and the watchdog
initializes the designated next method-invocation. It passes
the current user object to the module container to instan-
tiate one thread handler for every module’s method to be
invoked. The watchdog only waits until all thread handlers
are instantiated and starts fetching and processing the next
user object in the user list immediately. While the next
user is already processed the thread handlers still treat the
passed user object and method invocations independently
until work is done and terminate afterwards.

The disadvantage of this design decision is the heavy
amount of threads created, processed and removed continu-
ously.

The (practical) best case is a thread-count of m (every
method invocation terminates before the next session in-
stance is processed by Watchdog), the average case is a
thread-count of n*m (where n is the count of sessions actu-
ally active and m is the count of modules currently loaded)
and the worst case is a thread-count of n*x (where x is the
maximum thread-count per session defined in framework’s
startup configuration to avoid a system overload caused by a
dead-locked or corrupt method invocation). The worst case
can whether occur if the thread-cycle is configured much
too short (so method invocations massively overlap) or if
a method invocation can’t terminate (cause of dependency
problems e.g.).

Ω(n, m, x) = m

O(n, m, x) = n ∗ m

Θ(n, m, x) = n ∗ x

To optimise thread handling and method invocation per-
formance a dedicated thread management is implemented
in near future. The thread management will provide thread
recycling, extended benchmark facilities and dead-lock de-
tection.

5 Ongoing work

In near future the NuBric development level will reach
beta state. Topics which have to be processed to achieve



Figure 5. Sequence diagram of one WatchDog cycle (example)

this are: A final startup configuration syntax (probably us-
ing XML) including a dynamic configuration file creation
engine, extensive benchmarks of the threading-model and
dynamic method invocation, finalizing the API and mak-
ing a decision concerning the dynamic class loading and
method invocation based on the benchmarks achieved and
find a proper model and algorithm for clustering and inter-
connection of multiple framework instances (probably us-
ing object spaces like GigaSpaces [6]).

Furthermore first-party-modules are going to be devel-
oped for NuBric to support JMX [9] for framework man-
agement purposes, SAML and XACML for authentication
and log4j for logging purposes, to name only some of them.

6 Conclusion

The NuBric framework constitutes a novel approach in
resource access and subject behaviour control.

Access control policies can be enforced applying a range
of methods to evaluate the “behaviour” of the system or user
that is trying to get access and allows to integrate a broad
range of target systems that should be controlled. This al-

lows not only to define access control policies at one central
place, but also to use information (e.g., about behaviour)
that comes from different connected systems to be used as
an input for the access control logic. Moreover, in case of
policy-violations NuBric can interact with the running ses-
sion and stop access to all resources requested by the in-
criminated user and can eventually inform administrators to
follow up the situation.

By combining other approaches like RBAC and PBAC in
conjunction with the provision of third party module sup-
port via a comprehensive but lightweight API the field of
application is almost endless. In contrast to many other
projects and frameworks NuBric has no special focus of
application and is therefor easily applicable for any envi-
ronment by providing new, adopt existing or directly reuse
external modules.

We have discussed several application scenarios in dif-
ferent application domains that show the flexibility of our
system and how our approach provides advantages for all
parties concerned (e.g. users, security consultants, devel-
opers). To emphasize the framework’s capabilities and fea-
tures its design and architecture have been described in de-
tail where a special focus lied on different module’s pur-



poses, container classes, configuration, logging, the watch-
dog and the extended aspects of thread decoupling.

References

[1] Manish Bhide, Sandeep Pandey, Ajay Gupta, and
Mukesh K. Mohania. Dynamic access control frame-
work based on events. In ICDE, pages 765–767, 2003.

[2] Danny Coward and Yutaka Yoshida. Java Servlet
Specification Version 2.4. Sun Microsystems, Nov
2003.

[3] D. Ferraiolo and R. Kuhn. Role-based access controls.
In 15th NIST-NCSC National Computer Security Con-
ference, pages 554–563, 1992.

[4] Reinhard Fleck, Norbert Jordan, and Bastian Preindl.
Irongate AAA infrastructure. In IEEE 59th Vehicular
Technology Conference (VTC’04 - Spring), pages 1–5,
2004.

[5] Apache Foundation. The apache logging services.
http://logging.apache.org/log4j.

[6] Giga-spaces object space.
http://www.gigaspaces.com.

[7] Robert Grimm and Brian N. Bershad. Separating ac-
cess control policy, enforcement and functionality in
extensible systems. citeseer.ist.psu.edu/381709.html.

[8] Jeff Hodges, Prateek Mishra, Bob Morgan, Tim
Moses, and Evan Prodromou. Oasis sstc: Saml se-
curity considerations.

[9] Java management extension (jmx).
http://java.sun.com/javase/technologies /core/mntr-
mgmt/javamanagement/.

[10] Angelos D. Keromytis and Jonathan M. Smith.
Requirements for scalable access control and
security management architectures. cite-
seer.ist.psu.edu/keromytis02requirements.html.

[11] Jahwan Koo and Seong-Jin Ahn. A network service
access control framework based on network blocking
algorithm. In KES (3), pages 54–61, 2005.

[12] Leonard J. LaPadula. A rule-set approach to formal
modeling of a trusted computer system. Computing
Systems, 7(1):113–167, 1994.

[13] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and
S. Shah. First experiences using xacml for access con-
trol in distributed systems, 2003.

[14] Ricardo Nabhen, Edgar Jamhour, and Carlos Maziero.
A policy based framework for access control. In ICICS
2003, pages 47–49, 2003.

[15] Amon Ott and Simone Fischer-Hbner. The rule set
based access control (RSBAC) framework for linux.

[16] Bastian Preindl. AAA security framework for wireless
access networks. Master’s thesis, Institute of broad-
band communcation, Technical University of Vienna,
Austria, August 2006.

[17] Securent. Securent entitlement manager.
http://www.securent.com.

[18] T. Suzuki and R. Katz. An authoriza-
tion control framework to enable ser-
vice composition across domains. cite-
seer.ist.psu.edu/suzuki02authorization.html.

[19] Yahoo. Yahoo-mail anti-spam policy.
http://docs.yahoo.com/info/guidelines/spam.html.


