
SBA Research (SBA-K1) is a COMET Centre within the framework of COMET – Competence Centers for Excellent Technologies Programme
and funded by BMK, BMDW, and the federal state of Vienna. The COMET Programme is managed by FFG.

CORE Group - Philip König, Fabian Obermann, Dennis Toth, Alexander Schatten

Root Cause Analysis of Software Aging and Decay

Background & Motivation

▶ What is the goal for this work?
We aim to understand software decay and aging in complex software systems using principles from biological aging.

▶ What is our research question?
Can we develop a method to measure systemic aging processes and predict future risks in software systems using
bioinspired metrics?

▶ What did we do?
In biological systems, aging as in loss of function occurs when maintenance mechanisms themselves age and degrade.
We approximate this phenomenon in software systems using Degree of Knowledge1 and Code Change Entropy2 to
model potential degradation of software maintenance mechanisms and thus aging and decay.

Contact Us

Degree of Knowledge

▶ The DoK score incorporates
developer contributions, such
as lines of code added, modi-
fied, or deleted, as well as file
history, which considers com-
mit frequency and recency.

▶ To effectively capture a de-
veloper’s familiarity with a
file, the score also integrates
an exponential decay factor,
which assigns less weight to
older contributions.

▶ These factors are combined
using a weighted formula that
balances their relative impor-
tance. This allows for a com-
prehensive assessment of a
developer’s familiarity with a
file.

Knowledge Decay

Figure 1: x-axis represents time, y-axis represents individual files within a software project. Each horizontal cell and thus file is
color-coded based on the Degree of Knowledge score, ranging from 0 (low familiarity) to 1 (high familiarity). This highlights the
temporal evolution of developers’ familiarity with different parts of the software, revealing potential areas of knowledge decay and
increased risk for introducing bugs.

Code Change Entropy

▶ Code Change Entropy (CCE) is calculated via factors such as the frequency
and complexity of code changesmade by developers in a software project.
A high CCE value indicates a more complex code change pattern, which
implies a higher risk of future faults.

▶ Low CCE values represent simpler, more localized changes, suggesting a
lower likelihood of faults and a more stable maintenance process.

▶ A treemap effectively represents hierarchical data, allowing us to display
the distribution of CCE across files, folders, and subfolders, with darker
shades of blue indicating higher entropy values.

[1] Patrick Eric Carlson. Engaging developers in open source software projects: harnessing social and technical data mining to improve software development. PhD thesis.
[2] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In 2009 IEEE 31st International Conference on Software Engineering, pages 78–88, 2009.


	References

