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Abstract: In the last decades it became clear that, more often than not, software 

engineers were focused on delivering new features and in the process generated highly 

complex interacting layers and modules of software. Over long periods of times, very 

old legacy code interacts in complex ways with new code. Various studies imply that 

software aging is a phenomenon whereupon continuous execution of programs leads to 

a gradual build-up of errors and overall degradation of performance. Strange and 

unclear behaviour emerges from interactions of new and old modules, which in the 

worst case manifest itself in crashes, errors and other unwanted responses. This has 

especially drastic consequences for critical infrastructure networks like power grids or 

medical software, where conventional practices for error detection like controlled 

shutdowns and reboots are seldomly an option. Invaluable for early detection of such 

issues are non-invasive methods which would serve as detectors to assess when, for 

example, a software module begins to show first symptoms of developing aging related 

problems. Bio-inspired approaches are now a major player in software engineering, as 

processes like Darwinian evolution, mutation and learning are employed in more and 

more software systems. While first technology assessment methodologies concerning 

software aging have been developed none drew inspiration from the natural sciences, 

where, especially in the last few decades, biogerontology – the science of processes of 

aging and its consequences – has begun to pick up serious steam. By abstracting similar 

processes in biology and computer science the fundamental problems and their solutions 

can be analyzed and then transferred from one discipline to another. Recent discoveries 

showed that chronological age is not always an accurate variable to define a cell's or an 

organism's biological age, as different organisms and even different cell types within 

those organisms age at different rates. Similarly, it is important to not use chronological 

age as the only parameter to determine if and when code ages. Very old code that 

continuously gets maintained and cautiously ported to new platforms might exhibit less 



signs of software aging than chronologically younger modules which were dragged 

along by techniques like wrapping. Thus, this paper aims to make a case that software 

aging could be the next success story in bio-inspired software engineering. To solidify 

this notion a first prototypical practical application will be presented that draws from 

analogies that connect biology and computer science. 

 

1.Introduction 

 

As software finds its way into more and more domains of human society, so do the 

problems and challenges that can be associated with it. Thus, it has become essential to 

monitor and assess the health status of software. This is especially important if older 

code is carried over from version to version, possibly becoming more essential to the 

whole construct with every new feature and module built upon it (Parnas 1994). 

Although Software Aging is a relatively obscure field, it is growing steadily in the last 

decades (Cotroneo 2014). On closer examination one notices that pretty much all this 

research is dedicated to the treatment and of symptoms, generally summed up under the 

term software rejuvenation. This field mostly concerns itself with techniques on how to 

mitigate damages and troubles caused by the various sources of aging, for the most part 

by finding out the optimal point in time to reboot the system. So far there were multiple 

factors identified that contribute to the phenomenon such as round-off errors, data 

corruption or memory leaks. What is still waiting to be discovered and formulated is a 

set of theories, which, when combined, explain the fundamental mechanisms that cause 

software aging (Grottke 2008). This would require fundamental research that concerns 

itself not only with the treatment of symptoms but examining the whole range of causes 

and crucially not restrict oneself to the inner workings of software but also incorporate 

socio-technological aspects of how such systems age. 

When looking at recent software trends, many of them drew inspiration from biological 

systems like Genetic Algorithms (Kramer 2017), Ant Colony Optimization (Dorigo 

2006) or Neural Networks (Abdi 1999). Although for that to be a valid method, the 

solutions to problems one seeks ideally are sufficiently similar to the problems and thus 

solutions nature has found. This paper argues that software aging lends itself to this 



approach and is an excellent candidate to borrow future solutions from nature, by 

showing the parallels between certain aging mechanisms of both biological and man-

made systems.  

 

2.1 Software Aging 

The first notion that might cross someone's mind while reading about software aging is 

‘how is this even possible?’ as software per se is a mathematical construct without a 

physical body and thus unable to age. While this of course is true, software does indeed 

age, albeit in different ways than an embodied entity would. This does not mean that 

the mechanisms behind software aging are not comparable to those of physical aging. 

As there has been much research conducted in this field (Cotroneo 2014), there exist 

numerous definitions, which could be summarized as such: ‘With increasing running 

time, the software displays increasing performance decrease and elevated failure rates 

and even crashes.’ To make things worse such problems are hardly ever detected 

immediately and gradually build up in the background without being noticed until a 

tipping point is reached and manifested as incorrect service (or no service) or partial 

failures like increased response time (Grottke 2008).  

So the longer software runs, the more aging-related bugs it might pick up which 

accumulate and over time cause the system to move from its intended state to a failure-

prone one. A dramatic example of what can happen when this occurs in critical 

situations is the 1991 case of a patriot missile killing 28 US soldiers because the 

targeting system has been running for over 100 hours straight without a reboot. A bug 

that introduced a timing lag caused the missile to miss its intended target and thus kill 

the men. Tragically this could have been avoided if the system was restarted 

approximately every 8 hours (Marshall 1992). There are also less dramatic examples 

from everyday life, like operating systems needing to be restarted after long sessions to 

avoid complications because of various factors accumulating in the background. 

Problems like these arise at the runtime environment, concerning the internal 

mechanisms and microenvironment of software, but a complicated and complex process 



such as aging also occurs in a multitude of different ways. The authors propose that 

there are at least two meanings of running:  

1) Runtime environment: Software is executed and running, thus runtime effects 

take place (e.g., memory leaks) 

2) How people use software in general 

The first interpretation would correspond to the missile example, but the second one 

would lead to other forms of deterioration that arise from the socio-technological setting 

in which the software is embedded and itself is characterized as two distinct types. First 

is the oversight of the program's authors and/or owners to modify it according to 

different, new needs. The second is in a sense the reverse, wherein changes are made 

without the needed care and insight (Parnas 1994). Such headaches are further 

complicated therein that they can not only happen to the software of interest at hand, 

but also external supportive structures like libraries. These are a collection of scripts, 

functions and routines that generally seek to ease and smoothen out the process of 

programming. If such aging-related bugs originate from one or more third party libraries 

or even the application execution environment such as the operating system, it becomes 

very hard to locate and fix bugs as developers might lack the source code or expertise 

on the internal intricacies of the code they are maintaining. Issues like these demand 

some kind of indicator that flags a functional unit in a program as a potential source for 

trouble, but must not rely on naive parameters like simple chronological age of a unit. 

Well maintained and cared for code can remain operational for a long time and even 

when ported to new platforms might exhibit less signs of software aging than 

chronologically younger modules which were written and added with less thought for 

long term sustainability. 

2.2 Biological Aging 

First and foremost it has to be said that we are just starting to understand biological 

aging as it is a highly complicated and complex set of processes which consist of heavily 

intertwined functional regulatory networks, dynamically reacting to internal and 

external stimuli. This is further obstructed by the fact that each species, individuals 

within said species and separate modules, like tissues and cells, of those individuals age 



at different rates and speeds. Adding to this is the inherent difficulty of researching 

aging as getting first results could take years to decades (Goldsmith 2020). Generally 

speaking, aging has been described as a gradual decline of function over time, driven 

by local molecular and systemic alterations (Newgard and Sharpless 2013). For 

example, some species like the ‘immortal jellyfish’ Turritopsis dohrnii show negligible 

deteriorative changes in their bodies, also known as negligible senescence, implying 

that there seem to be repair mechanisms in action that actively work against forces that 

little by little degrade form and function on all levels of organismal organization. Under 

this point of view a more precise definition of biological aging has been conceived, 

namely it being ‘the random, systemic accumulation of dysfunctional molecules that 

exceeds repair or replacement capacity’ (Hayflick 2016).  

This simply means that the structural integrity of organisms is continuously 

compromised, but the balance of damage and responsible systems working against that 

slowly shifts over time in the direction of accumulating damage. It is hypothesized that 

a major factor of this is the fact that the maintenance mechanisms themselves deteriorate 

and thus the whole system enters an ever-accelerating downwards spiral. This 

combination of accumulation of increasing damage plus dwindling servicing results in 

error-prone functional units. Many higher organisms developed strategies of flagging 

such withered modules, one of them being the so-called Hayflick limit, named after its 

discoverer. It serves to describe an aspect of assessing a cell's actual age in contrast to 

chronological age. It explains why normal human body cells (this does not apply to 

most stem and tumor cells) only divide a certain number of times before stopping to do 

so. After this the cell will enter the so-called senescent state, a most interesting condition 

that will be discussed in more detail. One reason for this limit is that at the end of the 

chromosomes, which are highly compact storage units of DNA, protective structures 

called telomeres reside, which shorten with each cell division. When a critical length of 

those protective structures is reached, the cell starts a stress response cascade, ultimately 

reprogramming itself and irreversibly becoming senescent (Hayflick 1961). Important 

here is that this should not be seen as a sort of chronometer, as not time, but replicative 

events are being measured, or more precisely, how often the respective chromosomes 

and thus strands of DNA are replicated. Hayflick (2016) himself called this not a clock 



but a ‘replicometer’. This gives the cell the ability to effectively count the amount of 

times it has already divided, thus representing a measure for the effective age of a 

functional unit, in this case a cell. 

3.1 Senescence and the SASP 

As mentioned before, senescence is a stress induced cellular state that leads to particular 

behaviour and metabolic activity, including growth arrest. These stresses include 

telomere depletion, oxidative stress, general DNA damage and the onset of becoming a 

tumor cell. This is a gradual process that over time causes the cell to lose its designated 

function which happens at all levels of organismal organization, from single building 

blocks of the cell to whole cells and tissues and ultimately the whole organism. One 

must not mistake this for random order of events though. All bodily cells that undergo 

division have the option of inducing this particular state themselves and for the most 

part this process is executed orderly and uniformly, respective to the type of cell.  

Generally this program is activated when a cell notices that it has been damaged beyond 

a level of repair. It is a well established hypothesis that senescence developed as a tumor 

suppressor mechanism. If a cell notices that it has been damaged and might become a 

tumor cell, stopping its own growth and thus spreading is a logical step. Thus in the 

short term, senescence is a net positive mechanism, sacrificing single cells to ensure the 

protection of the tissue and therefore whole organism. But if damage accumulates over 

time and thus more and more cells need to be sent into senescence, the function of the 

concerned tissue can be compromised if cells are not properly executing their 

designated task, which has been demonstrated to be a major driving factor behind many 

age-related diseases (cf. Regulski 2017).  In contrast, there are some cell types that are 

able to continuously fend off this fate and lengthen their own telomeres like certain 

human stem cells or most successful tumor cells (Blackburn 1991). Those cancer cells 

that were able to avoid being sent into senescence, including growth arrest, and 

developed mechanisms to remain undetected by the immune system are then able to 

attain immortality, which of course is suboptimal for the host organism, but also led to 

immortal cell lines that can be grown in labs and used for research indefinitely.  



It was established that senescent cells change their metabolism permanently, but this 

transformation is not restricted to purely internal affairs. To the contrary most senescent 

cells develop a specific secretion pattern that is called the senescence-associated 

secretory phenotype (SASP), which consists of a myriad of different factors (Coppé 

2010). Most prominent are its pro-inflammatory characteristics, meaning that cells 

expressing the SASP induce permanent sterile inflammation (inflammation without 

present pathogens) in their immediate vicinity and thus recruit an immune response. 

This might indicate that tumor suppression is not the only purpose of senescence, but 

essentially flagging the affected area as in need of further inspection. Paradoxically and 

crucially, there is a dark side to this mechanism, as evidence is mounting up that this 

continuous inflammation in their tissue microenvironment leads to a plethora of 

pathologies including cancer (Courtois-Cox 2006). If neighbouring cells are exposed to 

these conditions and additional secretion of growth factors through the SASP, they 

themselves can, over time, become damaged and thus enter senescence, which leads to 

a positive feedback loop that gradually turns whole sectors of tissue into a zombie-like 

state and in the worst case even promotes tumorigenesis. Interestingly, the same 

mechanism can be beneficial and devastating, tumor suppressive and tumor forming. 

Although this might seem improbable or even impossible, processes with such opposed 

attributes are actually not unheard of and perfectly in line with evolutionary theory, 

summarized under the term antagonistic pleiotropy (Campisi 2007). To illustrate how 

such a trait might be propagated through generations one must only imagine an attribute 

that gives an individual a fitness advantage in its reproductive period, but a disadvantage 

in its later stages of life. By the time the negative influences come into effect, the 

individual has already had a high chance of generating offspring and thus passing his 

genes on to the next generation.  

It seems that part of the arsenal of bodily repair mechanisms is the ability to remove 

senescent cells, in particular natural killer cells might play a role in this (Wijshake T., 

& Deursen 2016), but as every cog of the machine continuously rusts and ages, 

protective mechanisms also degrade in its function and more and more senescent cells 

survive for too long and induce senescence in their neighbouring cells. This could also 

be the reason why only a small absolute number (<20%) of those might be able to 



contribute to systemic effects more gravely than one might expect (Campisi 2007). It is 

safe to say that wherever there are clusters of these cells, they serve as an indicator for 

anomalous tissue as they are at the same time cause and consequence of aging related 

diseases (Regulski 2017). 

3.2 Deprecation 

Code, maybe counterintuitively, is in itself treated as a liability and not an asset by many 

professional developers. What this means is that one wants to build their systems as 

lean and unconvoluted as possible. This is one aspect behind wanting to remove 

obsolete systems, every line of code brings with it not only upfront costs but also 

lifelong maintenance expenses. As the environment around code changes and evolves, 

it becomes more and more cumbersome to integrate it with new functionalities whereby 

it also becomes more expensive as programmers who are adept with languages of 

previous generations are getting more sparce. This and more are reasons as to why it is 

often more efficient, money and time wise, to remove obsolete parts than to let them 

chug along in the background (Winters et al. 2020). 

Code that is deliberately deemed no longer important or adequate must be marked to be 

replaced in the future. When software classes evolve, their API (application 

programming interface) and therefore integrated methods and functions must keep up. 

This can happen in many different ways, methods can be renamed, replaced and fields 

can change (Oracle 2020). However, one can not just make such changes overnight and 

without heads-up. In many industries antiquated code is still heavily used to the extent 

that modern programs often need to be backwards compatible with many different and 

older environments like outdated operating systems. This means that abruptly removing 

superseded but critical supporting software potentially renders users with suddenly non-

functional systems. This is especially crucial if there are programs that must run without 

interruption, e.g., applications observing critical infrastructure like power grids. The 

method of flagging outdated components as deprecated is a compromise to keep the old 

parts intact, but at the same time incentivize programmers to use the revised version. In 

practice this means that when programmers now use flagged elements, they get a 

warning that those will not be further supported or be removed in the future and thus 



should not be used. This introduces a time buffer visible for everyone that uses these 

parts, recommending that users switch over to the updated versions. Because this is 

overall a rather involved process, there must be good reasons to deprecate something, 

which include the API being insecure, buggy, or encouraging bad programming 

practices (Oracle 2020). It needs to be emphasized that this flagging is a manual process, 

done by the respective programmer. This introduces a source for potential errors, such 

as simply forgetting to do it or even flagging the wrong sections.   

To avoid this rather messy process of needing to manually go through sections and 

determine what can stay and what needs to go long after the system was built, one could 

look at how other disciplines cope with similar problems. Here it is important to mention 

that old does not equal obsolete and chronological age alone is not an indicator for 

obsoleteness. If a system is from the beginning on built with care and maintenance in 

mind, it might actually become better over time. But here lies the crux, the 

overwhelming majority of software systems are not built under this premise. Even the 

best development teams report that they have to work with tight deadlines and thus the 

idea of designing the product with easy removability in mind is often the first one to go 

(Winters et al. 2020). An illustrative example comes from Winters (2020), where he 

describes this on the basis of a nuclear power plant which shares attributes with software 

like high complexity and potential high criticality. It is a given that a nuclear plant has 

a natural decommission date, which of course influences many design choices, as it 

needs to be established beforehand exactly how, after its life span ends, each and every 

part is to be disassembled and disposed of in a safe manner. Such procedures stand in 

contrast to the practices of software engineering where this mentality has yet to be 

adopted widely. Winters (2020) also mentions that even in industry-spearheading 

companies like Google, systems are rarely built with such principles in mind mainly 

because of the reason mentioned before.  

Just like senescence which operates under the principles of antagonistic pleiotropy, 

developing software systems that do not incorporate easy options of maintenance and 

removability from the beginning on gradually lead to technical debt (Alves et al. 2016). 

This term describes deficits in internal structures of a system: Long-term health of the 

whole construct is sacrificed for short term benefits, like lower development costs and 



shorter development time, but eventually the amassed debt catches up. In most cases 

retroactively trying to fix problems that originated that way will cost way more and take 

much more time to correct compared to investing that time and money upfront. But even 

if rushed development means that some future proofing aspects of a project will be 

neglected, earlier introduction to the market will result in a short term ‘fitness gain’ 

simply by being first. 

 

4. Senescent Software  

 

Considerable parallels can be drawn concerning certain aspects of aging in both 

naturally evolved and man-made systems. For example, the fact that biological 

maintenance mechanisms deteriorate in themselves can also be seen in the socio-

technical aspect of software aging or what was also called software use in general. As 

programming languages and thus systems written in those become older, the people that 

are proficient in those and/or wrote the programs also age. In many cases those 

languages do not get updated indefinitely but superseded by new ones. The 

consequences of such negative deterioration spirals can be observed in many software 

companies, the main product of which is a software application of some sort. As this 

service is at the core of the business, it also must run constantly and thus as long as 

everything operates smoothly, it is not undergoing major updates that would disrupt the 

service for prolonged time. Some years later, the language in which it was written 

slowly becomes outdated and newer additional functions and addons are written in 

newer languages. This might be inconvenient but not a big problem at first, as long as 

the people that originally worked on it are still present and know the ins-and-outs of the 

system. But when these programmers eventually retire or leave the company for any 

other reason and the newer employees are not as familiar with the whole, increasingly 

complex system, this becomes a problem. The original team that was responsible for 

maintenance is now fractured or even replaced entirely and the new one simply is not 

as versed in the outdated programming language and thus the quality of maintenance 

degrades steadily as less and less people know how to deal with it and a downwards 

spiral is initiated. In such or similar cases, old code begins to express SASP like 



behavior: one can barely modify and maintain the old parts any longer, so the problem 

spreads all over the system: functionality that was modular and located before is now 

spreading over more and more domains of the system in ever-increasing workarounds 

that no one really has under control any longer. 

5. Practical Application 

In many cases code that needs to go is also code that can not go due to different reasons 

like some users still relying on it or hidden critical dependencies linking them to newer 

modules, as even for experienced programmers it is non-trivial to discover such 

connections in systems with high complexity. These are symptoms of negligence in 

development that were allowed to fester to the point that suddenly a tipping point is 

reached, and the problem becomes acute and very hard to solve. If one takes a look on 

how in biological systems malicious and/or obsolete parts are identified, the crucial 

difference to man-made ones lies in who identifies the problematic parts. Instead of a 

third party making subjective decisions, it is indeed programmed into each and every 

cell to continuously run service programs that lets it check its own health status and flag 

itself if there is something wrong.  

So, the first step in being able to remove such parts is identifying them. For this purpose, 

a first proof of concept prototype was devised, the goal of which is to analyse the history 

of a given software project and provide data concerning accessing and changes in the 

code made by programmers over time. The primary application was written in Java and 

uses the Git (a widely used software repository) history as its main data source. 

Currently it can be configured to run on three different levels of depth: Functions, 

Classes, and Files, which abstractly will be called scopes. It should be noted that 

depending on the adherence to programming standards, results from Classes and Files 

should be identic in most cases. In the first step a path to a directory is used as input to 

determine the project to analyse. From this path on all subfolders and relevant files are 

indexed recursively. A file is considered relevant if its extension is in a list of allowed 

and parsable extensions. From this a tree is constructed and changes are extracted by a 

command line call to Git at the level of the given scope. The text output of the command 

is then iterated over line by line with a state machine keeping track of which information 



is expected next and extracting the author, date, commit hash, and how many lines were 

added, removed, or modified and the total number of lines in the given scope. These 

numbers are used to calculate an overall severity score of the change. Those values are 

then exported as a .csv file, containing the following information: 

 

● File path (including name) 

● Date and time of change 

● Author of change 

● Severity of change (measured in % of changed code) 

 

This data is then fed into the programming environment Rstudio, where it can then be 

computed into statistical values and visualized as graphs. From these the relationship 

between different scopes, authors, and dates can be derived. Further it can also be 

observed which scopes change how often and how intensely allowing among other 

things the location of hotspots. Those enable to automatically detect dependencies 

between scopes by analysing which files are regularly modified together and thus giving 

information on potential hidden dependencies. Corresponding to how cells constantly 

check their health status, such a tool could be used throughout a development process 

to continuously check if newly written lines of code interfere with already existing ones. 

In addition, this can also be applied to already existing systems to identify senescent 

parts of code, as scopes that often get changed in tandem might have obscure links that 

are not obvious to programmers. This would serve to reduce systemic effects that could 

go unnoticed in the short run but lead to catastrophic consequences when discovered 

several years down the road.  

 

Conclusion: 

 

When one accepts that similar problems can help finding similar solutions, investigating 

approaches stemming from Darwinian evolution can serve as useful analogies for 

designing complex computer environments that also constantly change. 



This paper showed that there are intriguing parallels in the ways that both biological 

and technological systems age, which might very well implicate that naturally evolved 

solutions are a valuable source of inspiration, especially when considering how often 

that approach already led to technological breakthroughs. This method is especially 

tempting for exploring the phenomenon of software aging, as research on the 

fundamental causes is still lacking and there are clearly analogous processes in nature 

that serve as a cornucopia of potential answers. To check if the results from fundamental 

research are valid and applicable to real world problems, they were and will be 

continuously tested in parallel by devising fitting tools and procedures to strengthen the 

overall endeavour.  
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