
Root Cause Analysis of Software Aging in
Critical Information Infrastructure

Philip König1, Fabian Obermann2, Kevin Mallinger1,2 and Alexander
Schatten1

1 SBA Research pkoenig@sba-research.org, kmallinger@sba-research.org,

aschatten@sba-research.org
2 Vienna University of Technology fabian.obermann@tuwien.ac.at

Abstract. This paper examines the role of Software Aging and Rejuve-
nation and their effect on Critical Information Infrastructure and thus
Critical Infrastructure maintainability. Software systems tend to degrade
over time by entering a failure-prone state and showing decreased per-
formance. It is suggested that Critical Infrastructures are especially sus-
ceptible to the detrimental effects of Software Aging and that common
Software Rejuvenation remedies are not suitable in this context. Instead
of treating re-emerging symptoms, an alternative approach is presented
that seeks to monitor, analyze and, identify potential root causes like
underlying architectural problems of software used in Critical Infrastruc-
ture. Results of first applications are shown and intended next research
and development steps discussed.

Keywords: Software Aging · Critical Information Infrastructure · Main-
tainabilty · Code Change Analysis

1 Introduction

Critical Infrastructures (CI) span a wide range of sectors, among others, power
grids, communication, defense, or finance systems [12]. Critical means that in a
case of their incapacitation, corruption, or interference of any sort, the follow-
ing consequences could be catastrophic for economic and/or social welfare, and
national security. In short, CI constitute the foundation on which modern living
standards are built. Nowadays these infrastructures are increasingly dependent
on information and communication technology [13]. These include among other
things software and the hardware it is running on, which in this context are
called Critical Information Infrastructure (CII) and thus become a crucial part
of CI themselves [8, 9]. This poses a problem as CIIs often show significant se-
curity weaknesses and operational problems. Competition between contractors
or generally the pressure for a faster time to market interval and new function-
ality, leads them to offering ever faster development times for their product and
to integrate new features on a regular basis [13]. The consequences include ne-
glecting long-term security, stability, maintainability or introduce architectural
problems which could compromise modularity of the code and thus impede its



2 Philip König, Fabian Obermann, Kevin Mallinger and Alexander Schatten

own replacement in the future should it become outdated. Such practices may
be unnoticed in the short run but can lead to critical points of failure in the
future.

2 Software Aging and Rejuvenation

To monitor and deal with changes that software might undergo over time, the
field of Software Aging and Rejuvenation (SAR) emerged. This research field
proposes that software degrades over time or through processing demand [2, 4,
14, 15]. Avizienis et al. [1] identified causes, such as: memory bloat and leak-
age, unterminated threads, unreleased file locks, data corruption, storage space
fragmentation, and accumulation of rounding errors. These phenomena gradu-
ally proliferate unnoticed until a critical tipping point is reached, which then
leads to failures like increased response time or no service at all [7]. A dramatic
example of what can happen when this occurs in critical systems is the 1991
case of a Patriot air defense system malfunctioning and causing the death of 28
servicemen. [11] Patriot’s function was to intercept incoming missiles through
calculating their flight path. The way in which it’s software was written intro-
duced a time lag depending on the running time of the system, which after 100
hours of continuous operation built up to 0.3433 seconds. This resulted in shift-
ing it’s scanning area by 687 meters and thus missing an incoming missile. Many
of such malfunctions can be mitigated by doing a simple restart of the system,
hence these problems seldomly reach that tipping point in systems that are only
operated intermittently, like private PCs. CII that is implemented in systems
that must continuously be operable – like digital payment providers, emergency
services, or power grid management systems – cannot easily use simple restart
mitigation measures to enhance functionality [9, 15].

This highlights a problem that Software Rejuvenation, the umbrella term for
methods dealing with such software aging related bugs, has. The common meth-
ods to remediate the effects of Software Aging include stopping running software,
cleaning internal states, and restarting the system to restore it to a known, less
failure-prone state [2, 5]. This is precisely what many CII systems are, if at all,
only able to do under great expenditures [15]. Further, even if such treatments
are successful and re-establish the original failure-free state, they are generally
not suited to prevent the resurgence of these failures in the future.

3 Goals

Avizienis et al. [1] stated that such failures stem from the software itself, more
precisely the way it is devised. Until rectified, they are permanently written
into the source code of a respective program. Therefore, it is impossible to fix
them by mentioned techniques of Software Rejuvenation, the purpose of which
is more akin to treating symptoms and not addressing the underlying prob-
lems that cause them. Lutz [10] came to a similar conclusion, emphasizing that



Root Cause Analysis of Software Aging in Critical Information Infrastructure 3

higher code complexity, and thus potential interdependence, in safety critical,
embedded systems is a potential safety hazard and must be addressed early on
in development. In that vein, Graves et al. [6] devised a fault prediction model
on the assumption that code decay occurs when a system becomes so complex
that each change to it introduced on average one fault and thus is deemed unsta-
ble. Inspired by this line of work, this paper postulates that common methods
of Software Rejuvenation need to be supplemented by root cause analysis. To
achieve this we derived three different indicators to help assess its maintenance
quality: magnitude, quantity and clustering of code changes over time. Consid-
ering the example of well implemented modularity, in most cases there should
be very little to no required manual changes in other, functionally unrelated,
parts of the code when a certain module is modified. In contrast, when this is
not done appropriately, modifications could for example manifest as a rat-tail of
needed changes in modules that were not part of the original intended one.

Although, one must be cautious to not over-interpret clusters of change in mod-
ules in a singular commit. Only when coupled changes occur continuously over
time, they become an indicator for further inspection. Such changes would be
visible in the history of a given version control system and aggregate at the re-
spective points in time. Complex dependencies of this nature could make future
maintenance or replacement of modules very hard or even impossible and thus
pose a risk factor if a vulnerability or error is detected in such a module. For this
purpose, a proof-of-concept code change analysis methodology was developed,
which is able to identify changes in the nature of the mentioned indicators.

4 Methods

Our methodology was conceptualized in a two-step pipeline. In the first step the
target software is analyzed and multiple datasets for further processing are gen-
erated. In a second step a report from the used data is generated and visualized.
A programs git history is used to create the datasets. The target application
can be analyzed on three levels of detail: Files, Classes, and, Functions, which
will be called scopes from here on. However, Class and Function support is at
the moment only implemented for target applications written in Java and C#,
in which Classes and File scopes are mostly identical. Changes are clustered by
date to allow visualization of how often and intensely a scope changed and to
allow the location of change hotspots. The magnitude of a change is calculated
as percentual change of the lines modified/added/deleted in comparison of the
total lines of the given scope before the change. The application also counts how
often each scope was modified in combination with each other scope. The top
results are tabled in the report, as these scopes highly depend on each other.
For this specific use case, the GUI package of the checkstyle repository [3], an
open-source java application, was used.



4 Philip König, Fabian Obermann, Kevin Mallinger and Alexander Schatten

0

10

20

30

40

50

100

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Date

se
ve

rit
y 

of
 c

ha
ng

e 
(in

 %
)

Count
10
20
30

Name
BaseCellEditor.java
CodeSelector.java
CodeSelectorPresentation.java
ListToTreeSelectionModelWrapper.java
Main.java
MainFrame.java
MainFrameModel.java
package-info.java
ParseTreeTableModel.java
ParseTreeTablePresentation.java
TreeTable.java
TreeTableCellRenderer.java
TreeTableModelAdapter.java

Fig. 1. Number of code changes and their magnitude over time. Quantity of changes
represented by the diameter of the corresponding sphere, severity and thus magnitude
by its height on y-axis. Code change cluster visualized through grouping of spheres.

5 Results

In Fig. (1) the x-Axis represents the lifetime of the repository in monthly gran-
ularity, while the y-Axis shows the magnitude of the change in the given month
measured by percent. For multiple changes in one point of time the median was
used. The diameter of the spheres corresponds to the number and thus quantity
of changes in the given period and the color differentiates between individual
files.

The life cycle of single files can be observed, as their corresponding first data
point is their creation date and the last one the date of the last update. It can
be seen that in recent years, activity increased with small intervals between the
data points. Also, most of the code was written or refactored in 2015 and 2016.
The granularity in this time period could be further improved by filtering out
commits which changed almost every file, as they are most likely refactoring
commits that did not alter noncommentary code. Regarding the dates with the
most changes, a pattern becomes visible: they tend to cluster at the beginning
of the year. The reason being that at the beginning of each year, the copyright
headers in all files are adapted by changing the date to the new year. The only
other commits that touched nearly every file were the mentioned huge Javadoc
refactorings as can be seen in the periods from 2015 to 2016 and 2016 to 2017.
Excluding the refactoring commits, the data still shows that commits generally
are big, as most of them touch between 4 and 8 of a total of 14 files, potentially
indicating that the components might be interdependent. In some cases, this
is not necessarily a bad thing, as for example all TreeTable classes are usually
modified together because their functionality was extended.



Root Cause Analysis of Software Aging in Critical Information Infrastructure 5

6 Discussion and further research

By using this method, it is possible to extract and visualize when, to what extent,
and on which scope, code was changed. When displaying multiple items together
over time, it can be observed if and when those were changed simultaneously
like in the case of the TreeTable classes. This implicates that this approach is
suited to monitor how a project or codebase changes over time and thus provide
information about the interdependence of the individual scopes. Although the
developed software is fully functional and can be used on real world applications
like checkstyle, there are still some manual steps in the setup as well as in the
evaluation process. To increase the quality of the output, better metrics for the
magnitude of the change could be implemented by not only looking at the code
at a line-by-line level, but also consider how much changed in a line. Also changes
that consist of only whitespace characters could be ignored. A point that was
not considered in this first implementation are comments. In the repositories we
analyzed, a lot of changes often came from Javadocs or other general comments,
which most likely should not be considered code change in this context. Although
Graves et al. [6] mentioned that swapping out lines of code for noncommentary
lines of code did not impair the performance of their fault prediction model,
so there could be interesting information in doing multiple analyses, with and
without noncommentary code and compare those. On top of that, deleted files
are currently ignored by this methodology, but might provide valuable data if
one wants to analyse how a program changed over time. Future research will also
target the generation of an interactive html-based report. This will allow easier
evaluation, enabling the generation of drill down charts, and jumping directly
into the source code. Such data then could be linked to the history of bug
reporting tools or failure data. Not only would a combined analysis of commit
and failure history, directly linked to the source code, provide valuable insight
in the emergence of failures, in a reverse manner it could also be analyzed which
changes to the code were needed to eliminate it.

Conclusion

The continuous embedding of information technologies into critical infrastruc-
tures leads to increasingly unpredictable and complex systems. As these compo-
nents are often developed without proper long-term maintenance or replacement
strategies in mind, they introduce security vulnerabilities into all systems they
are in contact with. These software systems degrade and age over time and es-
tablished procedures to counter-act the most common detrimental effects are
often not well suited for the kind of systems employed in CI. A supplemental
methodology on the basis of three indicators of code change was presented that
is not only able to monitor quantity and magnitude of changes in code over
time but also track if certain items are periodically changed in tandem. Applied
to large codebases or projects such coupled changes could indicate dependen-
cies or modularity flaws and thus help identify potential risks that concern each
associated system.



6 Philip König, Fabian Obermann, Kevin Mallinger and Alexander Schatten

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts
and taxonomy of dependable and secure computing”. In: IEEE transac-
tions on dependable and secure computing 1.1 (2004), pp. 11–33.

[2] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K.
Vaidyanathan, and W. P. Zeggert. “Proactive management of software ag-
ing”. In: IBM Journal of Research and Development 45.2 (2001), pp. 311–
332.

[3] Checkstyle git repository. https://github.com/checkstyle/checkstyle/
tree/master\\/src/main/java/com/puppycrawl/tools/checkstyle/

gui. Accessed: 2022-04-27.
[4] D. Cotroneo, R. Natella, and R. Pietrantuono. “Predicting aging-related

bugs using software complexity metrics”. In: Performance Evaluation 70.3
(2013), pp. 163–178.

[5] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. “A survey of
software aging and rejuvenation studies”. In: ACM Journal on Emerging
Technologies in Computing Systems (JETC) 10.1 (2014), pp. 1–34.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. “Predicting fault inci-
dence using software change history”. In: IEEE Transactions on software
engineering 26.7 (2000), pp. 653–661.

[7] M. Grottke, R. Matias, and K. S. Trivedi. “The fundamentals of software
aging”. In: 2008 IEEE International conference on software reliability en-
gineering workshops (ISSRE Wksp). Ieee. 2008, pp. 1–6.

[8] A. Kalashnikov and E. Sakrutina. ““Safety management system” and Sig-
nificant Plants of Critical Information Infrastructure”. In: IFAC-PapersOnLine
52.13 (2019), pp. 1391–1396.

[9] J. Lopez, R. Setola, and S. D. Wolthusen. “Overview of critical information
infrastructure protection”. In: Critical Infrastructure Protection. Springer,
2012, pp. 1–14.

[10] R. R. Lutz. “Analyzing software requirements errors in safety-critical, em-
bedded systems”. In: [1993] Proceedings of the IEEE International Sym-
posium on Requirements Engineering. IEEE. 1993, pp. 126–133.

[11] E. Marshall. “Fatal error: how Patriot overlooked a Scud”. In: Science
255.5050 (1992), pp. 1347–1347.

[12] J. Moteff, C. Copeland, and J. Fischer. “Critical infrastructures: What
makes an infrastructure critical?” In: Library of Congress Washington DC
Congressional Research Service. 2003.

[13] E. Nickolov. “Critical information infrastructure protection: analysis, eval-
uation and expectations”. In: Information and Security 17 (2006), p. 105.

[14] D. L. Parnas. “Software aging”. In: Proceedings of 16th International Con-
ference on Software Engineering. IEEE. 1994, pp. 279–287.

[15] M. E. Sabino, M. Merabti, D. Llewellyn-Jones, and F. Bouhafs. “Detect-
ing software aging in safety-critical infrastuctures”. In: 2013 Science and
Information Conference. IEEE. 2013, pp. 78–85.


